(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(0', y) → 0'
minus(s(x), 0') → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
minus(0', y) → 0'
minus(s(x), 0') → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
le,
fThey will be analysed ascendingly in the following order:
minus < f
le < f
(6) Obligation:
Innermost TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, le, f
They will be analysed ascendingly in the following order:
minus < f
le < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, f
They will be analysed ascendingly in the following order:
le < f
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n456_0),
gen_0':s3_0(
n456_0)) →
true, rt ∈ Ω(1 + n456
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n456_0, 1)), gen_0':s3_0(+(n456_0, 1))) →RΩ(1)
le(gen_0':s3_0(n456_0), gen_0':s3_0(n456_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n456_0), gen_0':s3_0(n456_0)) → true, rt ∈ Ω(1 + n4560)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(14) Obligation:
Innermost TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n456_0), gen_0':s3_0(n456_0)) → true, rt ∈ Ω(1 + n4560)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n456_0), gen_0':s3_0(n456_0)) → true, rt ∈ Ω(1 + n4560)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)